In the MQB chassis the intercooler housing is particularly restricted and confined to a small amount of space, due to it not only housing the intercooler, but also the radiator and air conditioning condenser. The front panel in theory is a sandwich pack that houses the auxiliary cooling components. This means in order to increase the size of the intercooler without paying detriment to the performance of the surrounding items, and with also having very little extra space available, that it can be very difficult to execute the perfect blend of a high flow intercooler within such a close proximity.
Our research and development engineers started with a brief to fit our existing intercooler (FMMK7FMIC) that was for the MK7 platform, to our development VW MK8 Golf R. Upon installation, we then tried to establish if we could re-engineer the intercooler with an increased inlet and outlet size along with increasing the volumetric capacity to increase flow along with future proofing the design to work well with highly tuned stage 3 plus EA888 Gen 4 engines.
Using a combination of scanning software and traditional measuring methods, the design was created. This was then fine-tuned by our flow dynamics simulations programs (CFD), and the end tanks were initially created by 3D printers. This enabled us to ensure the fit was perfect on the vehicle before any prototype castings or machined billet end tanks were produced ready for dyno testing.
In the MQB chassis the intercooler housing is particularly restricted and confined to a small amount of space, due to it not only housing the intercooler, but also the radiator and air conditioning condenser. The front panel in theory is a sandwich pack that houses the auxiliary cooling components. This means in order to increase the size of the intercooler without paying detriment to the performance of the surrounding items, and with also having very little extra space available, that it can be very difficult to execute the perfect blend of a high flow intercooler within such a close proximity.
Our research and development engineers started with a brief to fit our existing intercooler (FMMK7FMIC) that was for the MK7 platform, to our development VW MK8 Golf R. Upon installation, we then tried to establish if we could re-engineer the intercooler with an increased inlet and outlet size along with increasing the volumetric capacity to increase flow along with future proofing the design to work well with highly tuned stage 3 plus EA888 Gen 4 engines.
Using a combination of scanning software and traditional measuring methods, the design was created. This was then fine-tuned by our flow dynamics simulations programs (CFD), and the end tanks were initially created by 3D printers. This enabled us to ensure the fit was perfect on the vehicle before any prototype castings or machined billet end tanks were produced ready for dyno testing.